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TRlAXlAL BALANCING TECHNIQUES 
IA STUDY OF SPACECRAFT BALANCE WITH 

RESPECT TO MULIPLE AXES] 

by 
William E. Lang 

Goddard Space Flight Center  

SUMMARY 

Spacecraft unbalance tolerance is likely to be expressed 
in terms of displacement of the center of gravity from its 
nominal position, and angular deviation between the princi- 
pal and reference axes. This study discusses the relations 
that define the unbalance of a spacecraft, with respect to 
three mutually perpendicular reference axes, in terms of 
measurable mass  parameters. It was motivated by the need 
to develop practical methods for balancing the San Marco 
spacecraft (the San Marco project is a joint effort of Italy 
and the United States). The theory proved directly and ef- 
fectively applicable; but complications due to the inaccu- 
racies of measured input data necessitated the development 
of modified methods for computing corrections. 
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TRI AX1 AL B ALANCl NG TECH N I QU ES 
I A  STUDY OF SPACECRAFT BALANCE WITH 

RESPECT TO MULIPLE AXES) 

by 
William E. Lang 

Goddard Space Flight Center 

INTRODUCTION 

The meaning and significance of static and dynamic balance of spin-stabilized spacecraft is 
well defined, and systematic means of measuring and controlling it have been developed.* This kind 
of balancing, which may be called “single axis balancing,” requires that a reference axis (the spin 
axis) be a principal axis of inertia of the spacecraft and that the spacecraft center of gravity be on 
this axis. 

Some future spacecraft, because of active attitude control systems or other operational con- 
siderations, will require extension of this concept to include concurrent static and dynamic 
balancing with respect to three mutually perpendicular reference axes. This may be called “tri- 
axial balancing. ” 

Triaxial balancing requires that the center of gravity coincides with the intersection of three 
mutually perpendicular reference axes, and that these reference axes coincide with the principal 
axes of inertia of the spacecraft. Single axis balancing is necessary but not sufficient for triaxial 
balance. It is sufficient that static and dynamic balance exists about two of the reference axes- 
balance about the third axis is then automatic. 

Under this concept of triaxial balancing measured values of the magnitude and phase of static 
unbalance and of dynamic unbalance will be used to compute the correction needed to balance a 
spacecraft triaxially. Correction is assumed to be made by adding weight at the surface of a sphere 
of unit radius with its center at x = Y = z = 0 . The techniques described in this paper are limited 
to spacecraft which are essentially rigid, solid, and of constant mass. 

DEFINITIONS AND COORDINATE SYSTEM CONVENTIONS 

Assume a spacecraft of any size and shape with three reference axes, XX , W, and ZZ, and any 
point in space, X ,  y, z , in a rectangular Cartesian coordinate system. An imaginary sphere of 

*Schaller, N .  C.,  and Lewallen, J.  M., “Methods of Expressing hlass Unbalance,” N.4SA Technical Note D-1446, May 1963. 
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radius R with its center at x = 0 , 
xZ + yz + z Z  = RZ . The unbalance of the spacecraft can be defined in te rms  of the masses and lo- 
cations of correction weights theoretically concentrated at points on the sphere surface in order to 
reduce the product of inertia about all three axes to zero. 

y = 0 , z = 0 , would have its surface defined by 

This study indicates that either five o r  three such weights are necessary. More than five 
could be resolved into five o r  three; less than three would suffice only in special cases. No rigor- 
ous proof is offered for  this hypothesis, but it can be supported by considering imaginary situations, 
and the derivations to be given here that follow from it are logical and consistent. 

One weight would correct  static unbalance, i.e., center of gravity displacement. It would be 
located at the sphere surface on a radial straight line from the actual center of gravity passing 
through the desired center of gravity, x = Y = z = 0. The other weights would be either one or  two 
diametrically opposed equal pairs. The location of any point.can be defined in te rms  of phase ori- 
entation with respect to two of the coordinate axes, plus radial distance from x = y = z = 0. Static 
o r  dynamic unbalance about XX, W, and ZZ can also be defined by a vector having magnitude in 
appropriate units and a phase orientation. 

To use both rectangular and polar coordinates, we must relate the two systems by appropriate 
conventions, which are to some extent arbitrary. Suppose the sphere to be enclosed by a cube and 

P -X A 

Figure 1 -Projection diagram of the coordinate system. 
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the cube, unfolded, to appear as shown in 
Figure 1. The large dots designate the posi- 
tive directions of axes passing through the 
centers of the six faces, and the curved ar- 
rows indicate phase angle convention. The 
tail of each arrow is at 0 degrees. The sys- 
tem follows trigonometric and right-hand 
vector rule convention; Le., when one is look- 
ing along an axis toward the origin from a 
positive end angles increase counterclock- 
wise. The symbols a, p ,  and y will be de- 
fined later. 

The significance of unbalance phase 
must be discussed. Static unbalance phase 
means the angle at which correction by weight 
addition is indicated. Dynamic unbalance 
phase also means an angle at which correction 
by weight addition is indicated. However, this 
correction has to be made with two weights 
180 degrees apart. One system to eliminate 
ambiguity, is to express dynamic unbalance 
as a torque vector in a right- o r  left-hand 
convention. Instead of this, here the phase of 



dynamic unbalance will mean the angle at which the correction weight having a positive coordinate 
parallel to the reference axis should be located. For example, if dynamic unbalance of D, /a needs 
weight w at + x ,  + y ,  + z plus weight w at - x ,  - y ,  - 2 ,  then a is the phase about the xx axis of the 
weight at + x ,  + y, + z .  (The weight at - x ,  - y ,  - Z  will  have a phase angle of a +180 degrees, but 
the dynamic unbalance phase, by convention, is a ) .  At this point it is necessary to define the fol- 
lowing symbols: 

D, ,& , D , B ,  D , / r  = magnitude and phase of dynamic unbalances about axes xx, w , zz after 
correction of all static unbalances about x = y = z = 0, 

I , ,  I,, I, = spacecraft inertias about xx, w, and ZZ axes, 

I,, , Iyz, I,, 

M = spacecraft weight, 

N and xN , yN, zN 

S x k  , S,&, S, 

= products of inertia with respect to indicated subscripts, 

= mass and coordinates of static correction weight, 

= magnitude and phase of static unbalance about axes xx, w, and ZZ , 
respectively, 

W ,  x ,  y , z and W, - x ,  - y ,  - z = mass and coordinates of dynamic unbalance correction weights, 

xy , yy,  z y  

s =  {x/.M' + y i  + 2,' , the center of gravity displacement, before correction, 

Ox , By, 0, = allowable angular deviations between the principal axes and reference axes. 

For the mathematical model defined by the foregoing, many relationships are more or  less 

= coordinates of the spacecraft center of gravity, before correction, 

apparent, and the more trivial of these will  be stated without explanation or  proof. 

DEVELOPMENT OF SIGNIFICANT RELATIONSHIPS 

Static Unbalance 

The indicated correction N at xN, y N ,  zN for center of gravity displacement is defined by 
NR = M 6 ,  Nx, = -kM, N Y ~  = -Myy, and NzN = - M Z , .  From basic concepts or by definition: 

YN 
tan a = - 

'N ' 
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XN 

YN 
t a n  c = - I 

RN might be called the triaxial static unbalance. Of course R is an assigned value, which could be 
unity. From Equations 4, 5, and 6, t a n  a t a n b  t a n  c = 1; therefore any two phase angles define the 
third. Equation 4 implies that s i n  a = ydi- ; therefore {m = y d s i n  a .  Similarly 
i w  = z d s i n  b and {m = x d s i n  c . Therefore Equations 1, 2, and 3 become: 

S, s i n a  S p i n  b S, s i n c  
N=-=-= 

YN z N  xN ' (9) 

and N must be positive. Equations 4, 5, and 7, or 5, 6, and 7, o r  4, 6, and 7 can be solved simul- 
taneously for X, , yN, and z,: 

z N  R cos b t a n  c ~ 

]cos2 b + t an2  c 
fx, = y, t a n  c = tanb = ' 

R cos c t a n  a xN = f y, = zN t an  a = tanc 
Jcosz c + tan 'a  ' 

y N  - R c o s a  t a n b  

- J=++b' 
~t zN = xN t a n b  = tans 

An alternative set  of equations, easier to use, is: 

J sx' 
XN = I - - *  

N2 
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Note that, in Equations 10-12 and 14-16, xN , yN, and zN are positive o r  negative as necessary to 
make N positive in Equation 9. This means that xN has to have the same sign as s i n  c , yN the 
same sign as s i n  a , and zN the same sign as s i n  b . 

It may be preferable to use three weights, one on each reference axis, rather than N at xN , yN, 
zN. (This would not introduce dynamic unbalance as a result  of static unbalance correction.) The 
corrections at unit spherical radius would be 

S y c o s b  2 S Z s i n c  at x = + 1 , y  = z = 0 , (17) 

(19) S, cosa  = S, s i n b  at  z = + 1,y = x = 0 ; 

negative values imply equal positive values at X, y, o r  z = - 1. The utility of Equations 9-19 de- 
pends on which of the parameters s, , s,, Sz, a , b ,  and c a r e  known. In general, if enough pa- 
rameters  to physically define the situation are known, the rest can be calculated. 

R , N ,  xN, yN, and zN define a mass moment with respect to x = y = z = 0 (Le., RN) and the 
direction cosines of a straight line radiant from x = Y = z = 0. R is an arbitrary choice, and N 

var ies  inversely withR , but the radiant orientation is fixed and independent of R ;  Le., N must lie 
somewhere along this fixed radiant. Of course two (or more) weights could be used instead of N . 
Two such weights N, and N, could be at different radii along the radiant, such that N,R, + N,R, = NR. 
They could also be placed at the same radius R along two secondary radiants, each inclined at 
angle B to the primary radiant, with the three radiants coplanar, such that N, = N, and 
2N, COS 4 = N . Addition of vectors radiating from a point in three-dimensional space is inherently 
more complex than the addition of coplanar vectors, because each vector has three components 
rather than two, but the general procedures are similar. 

Dynamic Unbalance 

Once the spacecraft center of gravity is at x = y = z = 0, (after addition of N) there is no 
static unbalance. Any remaining unbalance is dynamic, can be expressed as a mass moment couple, 
and must be corrected by a mass moment couple, o r  at least the correction must not reintroduce 
static unbalance. For the "spherical surface correction," this means W at x , y , z plus W at -x, 
-y, -2. W, x, y, and z are to be determined. 

Note that D, ,&, DY& and Dz,& are dynamic unbalances after the correction of all static un- 
balance. This is because the correction N will contribute dynamic unbalance, unless it lies ex- 
actly on axis XX, W ,  or  ZZ. The contributions of dynamic unbalance about these axes due to N 
are: 

5 



= Ny i m  kan- '  f + 180" , N Y  Y 

Note that the signs of X, y ,  and z need to be considered in defining phase angles; for example, 
although t2/-2 = -2/t2 = -1 , tan'l(+2/-2) = 135 degrees and tan-' (-2/t2) = 315 degrees. The phase 
angles defined will be those of corrections having positive "parallel to reference axis" coordinates; 
for example, phase of unbalance about xx is that of a correction weight having a positive x coordi- 
nate. W ,  X ,  y ,  and z can be determined in terms of the parameters D, , Dy, D,, u , p ,  and y and 
an assigned value for R . Enough parameters to physically define a situation will suffice for a 
complete solution; for instance, the dynamic unbalance magnitude about one axis, plus the phase of 
unbalance about any two axes, is sufficient. Therefore any additional data would be redundant. 
This has significance for computer programming because input must be sufficient but must not be 
redundant, unless the program provides for using redundant data to compute alternative results. 
The added data would also be inconsistent insofar as it would not be 100 percent accurate. 

From basic concepts o r  by definition: 

t a n a  = - $ ,  

X 
tan y = - Y '  

x2 t y2 t z2 = R2 

D, = 2Wz ix- 

Equations 23-25 and 27-29 can be combined into: 

D, s i n a  Dy s i n p  - 
2yz - w =  2w = 

D, s in  y 
2zx . 

(23) 

(24) 

Equations 23-26 can be solved for x , Y, and z. The results are: 
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z Rcosptan y 
f .x = y tany = G Q  = ,'cos2p + tan2y ' 

X Rcos y t a n a  
f y  = z tana = - = 

tan y ,'cosz y + tan2,  ' 

This solution, although correct, proved unsuitable for numerical calculation, because the 
trigonometric functions involved can have values which are affected drastically by minor deviations 
of phase angles. A more useful solution, which involves the use of Equations 23-29, is: 

1 
- h 2  + & r z  + D z 2 )  + (-h2 + Dy2 + Dz') ' 
+h2 - Dyz + DzZ +Dx2 + Dy2 - DzZ 

I x '  = /l + ( (3 5) 

The values for X ,  y, and z can be real only if the sum of any two of the quantities D: , D:, and 
D: exceeds the third quantity. Any real mass configuration will  satisfy this condition in fact, but 
erroneous measurements may not. Methods for "normalizing" measured data to overcome this 
problem will be discussed later. The method of solving Equations 26-29 for Equations 35-37 is 
given in Appendix A. 

To calculate W , X ,  y , and z from Equations 30-33 it is necessary to know the dynamic un- 
balance about one axis, plus the phase of unbalance about any two axes. As R may have any con- 
venient value, it is logical to let R equal one unit of length. 

TO use Equations 34-37 requires that dynamic unbalance about all three axes be known, but it 
is unnecessary to know any phase angles, except to define signs of W, x, y, and z. The signs of 
x ,  y, and z must define the unique location of a positive or  negative w, and require a convention. 

7 



Derivation of the convention depends on the established system geometry, and the established 
dynamic ualance phase convention. 

-w, +x, i y ,  +z 

-w, -x, -y, -z 

From Equation 30 it is evident that the expressions I), sina/2xy, D, sinp/2yz and D, siny/2zx 

must all yield W as either positive o r  negative. A positive W means correction by weight addition 
( w  at X ,  y ,  z and w at -x, y , -Z ). A negative W means that correction could consist of weight 
removal, i.e., removing W at X ,  y ,  z and at -x, -y,-z. However, this is not a practical correction 
means; therefore derivation of an equivalent correction by weight addition is necessary. With a 
three-dimensional model it can be demonstrated that 

i s  equivalent to +w, -x, +y, +z 

+w, +x, -y, -z 

+2w, 0 ,  +y, -z 

+2w, 0 ,  -y, +z 

or +w, +x, -y, +z 

+w, -x, +y, -z 

+2W, +x, 0 ,  -z 

+2w, -x, 0 ,  +z 

or +w, +x, fy ,  -z 

+w, -x, -y, f z  

+2w, +x, -y, 0 

+2w, -x, +y, 0 

It is now apparent why triaxial balancing requires either three or  five weights. Static un- 
balance requires one weight N . Dynamic unbalance requires two weights if w from Equation 30 is 

I ‘4r 

-X 

Figure 2-Isometric representation of the 
coordinate system. 

positive; if W is negative the equivalent cor- 
rection by weight addition requires four weights. 

It will be shown that the sign of w , and 
therefore the number of correction weights, can 
be predicted from any two dynamic unbalance 
phase quadrants. 

Figure 2 represents the octants of a sphere 
with the signs of X ,  y ,  and z and the trigono- 
metric quadrants of a, p , and y . Data for each 
octant can be tabulated as in Table 1. By ab- 
stracting significant data from Table 1 and 
considering the implication of a negative W ,  

Tables 2 and 3 may be derived. 

In Table 1, A through H represent the 
octants of the sphere, and W must be defined in 
two diametrically opposed octants. Data for 
octants E-H apply to the -X hemisphere. The 
second column gives the signs of x , y , and z .  

Column 3 shows whether a positive W (correction by weight addition) or  a negative W (correction 
by weight removal) is to be defined. Column 4 shows the quadrant of the phase of dynamic un- 
balance (about each axis); correction in the corresponding octant is implied. This is the quadrant 
of a ,  p, o r  y in the octant only if the octant is on the positive side of the x, y , or z axis. Because 
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Table 1 

Spherical Octant Correction Signs. 

Octant 

A 

B 

C 

D 

E 

F 

G 

H 

Coordinate 

X Y  z 

+ + +  

+ + -  

+ - -  

+ - +  

- - -  

+ - -  

- + +  

- + -  

?ositive or 
Negative 

Zorrection 

+ 

- 

+ 

- 

+ 

- 

+ 

- 

+ 

- 

+ 

- 

+ 

- 
- 

+ 

- 

Unbalance 
Phase 

Quadrant 

a P r  

1 1 1  

3 3 3  

2 4 0  

4 2 0  

3 @ @  

1 @E3 

4 0 2  

2 0 4  

OOQ 

@QQ 

@ @  3 

@(a 1 

0 2  4 

a4 2 

@ 3 @  

0 1 0  

Sine 

a P Y  

+ + +  

- - -  

+ - -  

- + +  

- + -  

+ - +  

+ _ _  

+ + -  

+ + +  
- - -  

+ - -  

- + +  

- + -  

+ - +  

+ - -  

+ + -  

Coordinate 
Product 

~ 

xy yz zx 
- 

+ + +  

+ + +  

+ - -  

+ - -  

- + -  

- + -  

+ - -  

- - +  

+ + +  

+ + +  

+ - -  

+ - -  

- + -  

- + -  

+ - -  

+ - -  

W 

Ix s i n a  D, sinp D, s i n ,  
~~- 
2xy 2yz 2zx 

+ + 

- 

+ + 

- - 

+ + 

- - 

+ + 

- - 

+ + 

- - 

of the dynamic unbalance phase convention, if the octant is on the negative side the unbalance phase 
quadrant is diametrically opposed to the octant phase quadrant; such cases are noted by the circle 
around the quadrant number. The concept involved requires three-dimensional visualizing to de- 
fine the unbalance phase quadrant in each specific case, and column 4 lists the results of this 
exercise. 

For convenience and emphasis the dynamic unbalance phase convention will  now be repeated: 
is the phase of a light a is the phase of a light spot with a positive x coordinate about axis XX ; 

spot with a positive y coordinate about axis W; y is the phase of a light spot with a positive z 

coordinate about axis ZZ. 
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Table 2 

Corrections Based on Table 1. 

Coordinates for 
Corrections W l w  

x y z I - x - y - z  1 

- + +  
- - -  

Unbalance Phase 
Quadrant 
. P Y  

+ Add as indicated (2 weights) 
- U s e  Table 3 (4 weights) 

1 1 1  
1 4 2  

I 2 4 3  
2 1 4  1 3 2 4  
3 3 3  

4 3 2  
4 2 1  L _ ~ .  - 

+ + +  
+ - -  

Correction 

- - -  Add as indicated (2 weights) 
Use Table 3 (4 weights) 

+ + -  - - +  + Add a s  indicated (2 weights) + - + / - + - I  - I U s e  Table 3 (4 weights) 

+ - -  
+ + +  

+ - +  + Add a s  indicated (2 weights) 
Use Table 3 (4 weights) 

Table 3 

Equivalent Corrections by Weight Addition 
for Negative W Cases in Table 2. 

._ 

~ 

*W' = 2W(y2 + ZZ), Iy'I = y / y m ,  

t W' = 2W(ZZ + XZ), Ix' I = x / F + 7 ,  

* W' = 2W(X* + y2), [x' I = x / i x v ,  

Iz') = z/G-T. 

IZ'I = z / & T z .  

IY'I = Y / i .  

Since column 2 includes all octants, column 4 
includes all physically possible a , p ,  and y phase 
quadrant combinations. Octants E-H are included 
for completeness but it is sufficient to define one 
of the two weights W , and the one in the +x hemi- 
sphere can be chosen. In other words x can be 
considered always positive, by convention. 

Table 2 includes all physically possible dy- 
namic unbalance phase quadrant combinations. 
There are 8 of these: 111, 243, 324, and 432, which 
imply correction by two weights, and 142, 214, 333, 
and 421, which imply correction by four weights, 
placed as indicated in Table 3. Note that if the 
quadrant of a is known, there are only two possible 
quadrants for p and these are always adjacent 
quadrants. Also, a and P determine Y since 
t a n a  t a n p  t a n  y = 1. 

Column 5 of Table 1 shows the sign of sina , 

Column 6 gives the signs 
s i n  p , and s i n  y corresponding to the quadrant 
tabulation of column 4. 
of the products XY, YZ, and zx based on the col- 
umn 2 signs for X, y , and z . Column 7 tabulates 
the signs of w, determined from Equation 30, by 
using XY, YZ, and zx from column 6 and sin a ,  

10 



s in  p , and sin y from column 5. The fact that the results uniformly conform to column 3 veri- 
fies the entire table. Note that D,, D,, and D, are positive by definition. 

APPLICATION OF GENERAL PRINCIPLES TO THE PROBLEM 
OF BALANCING A SPACECRAFT TRIAXIALLY 

Expressing Triaxial Unbalance and Unbalance Tolerance 

Just  as single unbalance tolerance is often expressed as center of gravity displacement and 
principal axis tilt, triaxial unbalance tolerance basically limits center of gravity displacement (from 
a point), i.e., 6 ,  and tilt of all three principal axes (Ox ,  B y ,  8,). The values Ox,  e,, and 8, are 
likely to be equal, or, in some cases, two of them may be equal and the third considerablysmaller. 
Analytically, all three axes have identical significance, hence the triangular symmetry of the pre- 
ceding derivations. In practice, unbalance tolerances may define a nonspherical volume limit for 
the center of gravity and principal axis limits within volumes other than circular cones. 

In any event, in expressing static unbalance magnitude: 

where R is the assigned value. Note that R , N, and M define unbalance magnitude. It is necessary 
to have xN, yN, and zN to define the direction of unbalance. 

It is pertinent to distinguish between dynamic unbalance and product of inertia. Although dy- 
namic unbalance is a product of inertia, and product of inertia is a dynamic unbalance, there is a 
conceptual difference. 

An unbalanced object, with reference axes XX,  W, and ZZ,  has principal axes X'X; Y'Y;  and 
z'z' skewed e,, e,, and 8,  from the reference axes. Two of the principal axes are axes of maxi- 
mum and minimum inertia, and the three principal axes a r e  mutually perpendicular. 

The product of inertia concept is that the mass of the body is projected onto a plane defined by 
two perpendicular axes, such as xx and w . The product of inertia I,, is then XY dm; Le., the 
integral summation of mass  elements t imes the product of their XY coordinates. Products of 
inertia about pairs  of principal axes are all zero. I,, , Iyz, and I,, will have positive o r  negative 
values. 

s 

The dynamic unbalance concept, for dynamic unbalance DX&about axis XX, is that all the mass 
of the body is projected onto a plane xp defined by axis XX and an axis PP in the YZ plane oriented 
so that the product of inertia I,, is maximum. 

II,,I is the magnitude D, of dynamic unbalance, and the orientation of PP in the YZ plane de- 
fines the phase angle u of dynamic unbalance. If an axis QQ is perpendicular to PP and in the YZ 
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plane, then IxQwill be zero. Dynamic unbalance is zero about all three principal axes, and some 
positive value for any other axis. It is always positive because its phase angle defines vector 
direction-a negative value at phase angle a is stated as an equal positive value at phase angle 
( a  + 180"). A phase convention is essential, and so is a convention on whether "unbalance" means 
existing net mass  moment (heavy spot) or indicated correction (light spot). In this paper, unbalance 
means indicated correction. 

It is noteworthy that, although only the principal axes are axes of zero dynamic unbalance, 
there is for any axis AA one perpendicular axis BB such that the product of inertia IABis zero. 

The distinction between product of inertia and dynamic unbalance has been clarified at some 
length because it is rarely explicitly stated. For the conventions established, it is apparent that: 

D, = i=,,an-' X Z  , and I,, = D, s i n a  = D, cos p , (39) 

, and I,, = D, s i n p  = D, cosy , 
I," 

/ T 

The principal axis tilt in the XY plane is (1/2) tan- '  ( 2 1 x y ~ I x x  - I,,/) and, for small  tilt angles 
(< 10 degrees), it may be considered I,/[ I,, - I,, 1 
a tilt angle < 10 degrees and no cosine e r ro r  (cosine e r r o r  would actually be minimal) 

radians. Therefore under the assumption of 

e, 2 d(Ixx1:1J + ( I x x l ~ z I , ~ z  

Equation 42 may be considered exact for all practical purposes since 8, would be less than 10 de- 
grees. By using Equations 39 and 41 in Equation 42 and making some rearrangement, 

s i n  a C O S Q  

Similarly 

8, s i n p  cosp _ -  
DY - iLyy - + (Iyy - I,,) ' 

(43) 

(44) 
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Equations 43-45 relate the tilt of each principal axis from an adjacent reference axis to the corre- 
sponding dynamic unbalance about the reference axis. That is, with I,, Iyy, I,,, and ~,,h- known 
8, can be calculated and compared to tolerance, as can B y ,  with D Y b  known, or e,, with D, /r 
known. How to establish limits for D, , Dy, and D, f rom a knowledge of e,, e,, and e, is less 
apparent, but can be done as follows: Study of a general function sin2 e/A + cos2 e /B shows that the 
maximum limit for D, in Equation 43 would occur when either s i n  a = 0 

and COS a = 0 
and COS u = 1 , or sin a = 1 

It follows that the limits for D, , Dy, and D, are: 

(48) Dz 5 (I,, - ~ ) e ,  . 

I, must, in each case, be chosen from I,,, Iyy, and I,, to make D,, D,, or D, a minimum but 
not zero. Note that these equations a re  predicated on the most unfavorable phase orientations of 
a ,  p , and y .  Larger D, , D,, and D, may or may not be compatible with ex, By, and 0, limits, 
and more than 41.4 percent larger would never be compatible. 

Triaxial dynamic unbalance could be expressed as D X k ,  D Y E ,  D&. This fully defines all 
parameters, and principal axes tilts can be determined if I,, , Iyy, and I,, are known, but there 
is no indication of the necessary corrections. If separate corrections were applied for D,, D, , and 
D,, six weights would be needed, weight addition would be excessive, and the result would be that 
dynamic balance would not exist about xx, Y Y ,  OY zz. because of interaction between the cor- 
rections. Also D , L ,  D y b ,  D z / r  contains redundant data-D,k and D, /p fully define the 
unbalance. 

A better way to express triaxial unbalance, both static and dynamic, is by N , x,, y,, and Z, 

and W, X, y , and Z .  This defines the situation and also the necessary correction. Equations 23-29 
enable derivation of D&, D Y b ,  and D,& from W, X, Y, and z .  It is to be understood that N and w 
are on the surface of a sphere of unit radius (and therefore x,, y,,  z , ,  X, y ,  and z will all be less 
than one) and that correction w is needed at +X , +y, + z ,  and also at -3 -y, -2. N is directly 
indicative of the magnitude of triaxial static unbalance (x,, y,, zN define its direction) and W is 
indicative of the magnitude of triaxial dynamic unbalance, with x , y , z defining its direction; X, , 
y, , zN and x, y , z are direction cosines of the unbalance vectors. 

It is noteworthy that, although N = 0.707 is,' + S,' + S,' , W is neither equal to 
nor related to it in any simple fashion. W is actually 0.707,/D,' + D,' + D,' 

where x2 + yz + z2 = 1. 

13 



Computing the Effect of Changes to a Spacecraft 

Suppose the balance condition of a spacecraft is N , xN, yN, z N  , W ,  x , y , z , and a weight C is 
added at p , q , r . The new balance condition can be defined as follows below: (For convenience 
the symbols d ,  e ,  f will  be used in place of xN , yN, and zN and N',  d' ,  e ' ,  f ' ,  W ' ,  x',Y', z ' w i l l  
mean the new balance condition.) 

Note that W , x , y , z includes all dynamic balance effects of N, d , e , f , and since W ,  x , y ,  z 

implies W ,  +x, +y , +z,  plus W ,  -x, y , -2, it has no static balance effect. For consistency, addi- 
tion of C at +p, +q, +r can be coded as +c, - p, -9, - r ,  -C, + p ,  + q,  + r, which is actually the 
correction needed by the unbalance due to C (i.e., add C at - P ,  -9, - r  and then deduct C at fp  , 
+q,  + r  and at -p, -q ,  - r ) .  

The problem can be stated as follows: 

(N,  d ,  e ,  f ,  W ,  x ,  y, z )  (known input) @ ( + C , - p ,  - q ,  - r ,  - C ,  + p ,  + q ,  + r )  = ( N ' ,  d', e' ,  f ' ,  W ' ,  x', y', z ' , )  

meaning two known unbalances a r e  to be superposed to give a third in the same form of expression 
as the f i rs t  two. The problem is how to perform the superposition operation e. The information 
content of N ,  d ,  e ,  f ,  W ,  x ,  y, z is 

INPUTA = 

Note that, since R = 1 by convention, the information content of N ,  d ,  e ,  f , W, X, y, z could be 
represented by N, d,  e, W ,  x ,  y. The information content of + C, - p ,  -9, - r, -C, P , q, r is 
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p2 + q2 t r' = R: (which may have  any v a l u e ) .  

Input B could be coded as -c, p,  q ,  r .  Note that for input B, a = U ,  b = ,B, c = y ,  and the value 
of R, does not affect the fact that (Sx &)B, ( S y b ) B ,  (Dx h),, etc. are the corrections for  + C  at 
t p ,  +q ,  + r ;  i.e., - C  at + p ,  + q ,  t r  . It has been shown earlier that -c, p ,  q ,  r may actually imply 
five individual weight additions. 

Some of the information content of inputs A and B is not independent and therefore redundant, 
and only the items marked with an asterisk are needed to perform the operation input A 8 input B. 
This involves vector addition of corresponding elements of the inputs, as follows: 

R = 1 (by definition) , 

This is sufficient information to derive output C in the form N', d', e ' ,  f', W' , x', y', Z '  (re- 
dundant components a r e  not included). It has already been established that (Sx A) and ( S y / b  ) 
will yield N', d' , e ' ,  f '  for output C (Equations 9-16). Also ( D x , h ) c  and ( D y A ) c  will yield W '  , 
x', y ' ,  z '  for  output C (Equations 30-37). Therefore output C is obtained in the form N', d', e ' ,  

f', W', x', y', z', or can be coded as N', d ' ,  e ' ,  W',  x', y' (since R = 1). 

The 8 operation is quite tedious by manual methods, but would be trivial for a suitably pro- 
grammed computer, which could readily evaluate the balance condition of a complicated assembly 
from any number of inputs coded in the form - c, p , q ,  r . It could also evaluate total spacecraft 
weight (I: c ) and inertias about reference axes XX, W,  and ZZ , which are I: C(p2 + q2)  , 
X C (4' + r2), and I: C (r' + p2) except that the inertias would not include the body-centered inertias 
of components. The dynamic unbalance results would also f a i l  to include the body-centered dy- 
namic unbalance of components. 
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These body-centered mass parameters could be included in a computer program with little 
additional complication, and so could inputs coded in polar rather than rectangular coordinates. 

Prerequisite Revision of Measured Unbalance Data 

To solve for either static or dynamic correction it is necessary to compensate for the fact 
that the input data is interdependent, partially redundant, and to some degree inaccurate, and 
therefore inconsistent. The inconsistency comes from measurement inaccuracies and also from 
the fact #at the axes which are theoretically orthogonal and intersecting are neither Perfectly 
orthogonal nor exactly intersecting. 

To obtain an optimized solution by the methods to be described requires first that the input 
data be "normalized." Normalizing makes all the input data compatible and also averages out 
random er rors .  All raw data is assumed equally reliable, and for vectors this implies that the 
angular e r ror  in degrees i s  approximately equal numerically to 0.6 the magnitude e r ro r  expressed 
as a percentage (for example, a 2 percent e r ro r  in magnitude is approximately equivalent to a 
1 degree e r ro r  in phase angle.) 

It has been shown that only certain combinations of unbalance phase angle quadrants a r e  
physically possible. It can also be derived that for static unbalances 

s, cosa  = S, s i n b  , 

S, cos b = S, s i n c  , 

S, cos c = S, s i n a  , 

as given in Equations 17-19, and for dynamic unbalances 

D, cosu = D, s i n y  , (49) 

D, c o s p  = D, s i n a  , (50) 

D, c o s y  = D, s i n P  . (51) 

These relationships would hold exactly for perfect data, but are met only imperfectly by em- 
pirical measurements. Therefore, normalizing data means adjusting it to conform to Equations 
17-19 and 49-51. This is best illustrated graphically, but an equivalent algebraic method can 
easily be derived. 

Figure 3 shows exact unbalance vectors S, &(OX), S y / b  (OY) ,and S z k ( O Z )  on a common polar 
plot. The res t  of the diagram illustrates that these vectors conform to Equations 17-19. 

Figure 4 shows, on a similar plot, measured values OX', OY' , and OZ' of unbalance about the 
three axes. The rest of the diagram shows their nonconformity with the equations. The rectilinear 
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a 90" 

200" A 1270" ' 340" 
Figure 3-Plot of exact unbalance vectors. 

200"1\ 1270" / 340" 

Figure 4-Normalizing plot for inexact 
un ba lance vectors. 

projection of rotated components of the original vectors defines three rectangular areas, each 
having x', Y', or  z' as one corner, and X ,  Y ,  o r  z as geometric center. 

ox , OY, and oz satisfy Equations 17-19 and are  the normalized values of the original vectors 
OX' , oY', and OZ' . All three original vectors a re  changed in both magnitude and phase. The 
normalized vectors are not necessarily exact, though they tend to define the overall condition 
better than the original measurements, but they are constrained to be consistent and therefore the 
calculation of unbalance correction is not complicated by multiple results based on the choice of 
input parameters from redundant data. Also, inaccurate measured data could appear to define a 
physically impossible situation (imaginary solutions of equations), whereas normalized data cannot. 

The procedure for normalizing static unbalance data has been described. The procedure for  
dynamic unbalance data is the same, except that Equations 49-51 apply. In all cases measured 
data may be expected to conform approximately with the applicable equations. Extreme deviation 
would imply a major mistake rather than normal inaccuracy. With S, ,h, S y m ,  S, A, D, /I, D y B , D Z b  
considered to be normalized input data unbalance correction calculations can be made by using 
Equations 13-19 and 34-37. 

Computing Dynamic Unbalance Corrections 

An essential operation in determining dynamic unbalance correction is deriving a basic cor- 
rection w, X, y, z from normalized data D , ~ D ~ ~ D ~ & .  The symbol /\a";: will be used to 
denote this operation, which consists of solving Equations 34-37 for W , x , Y , and z . In these 
equations x , y , and z can have real values only if the sum of any two of the quantities D: , D:, 

and D,' exceeds the third quantity. This condition will be met by exact or  normalized values, but 
may not be satisfied by measured values. 

It is necessary to use previously derived tabulations to determine the signs of X, y , z , and 
w based on the quadrants of unbalance phase angles. Table 4, which is taken from Table 2, covers 
all cases for which w is positive. 
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Table 4 

Coordinate Signs for Dynamic 
Correction with Two Weights. 

Phase Quadrant 

a P Y  

1 1 1  

2 4 3  

3 2 4  

4 3 2  

Sign 

w x y z  
~ 

~ 

+ + + +  

+ + + -  

+ + - -  

+ + - +  
~~ 

Although there is a possibility of these positive w cases 
occurring, a real  spacecraft configuration would very often 
need the equivalent of a negative W correction, with i w at X, 
y ,  z, and tw' at x', y', z' (Table 3). 

Table 3 indicates the correction required at the surface of 
a sphere of unit radius, and the preferable choice between A, 
B, and C would be that for which W' is a minimum; i.e., A if 
y and z are both less than X, B if x and z are both less than 
y , and C if x and y axe both less than Z .  

The tables give the coordinates of correction weights in 
the positive x hemisphere; it is to be understood that equal 

but diametrically opposed weights are also implied in the negative X hemisphere (i.e., reverse  
signs of x, y ,  z, X I ,  y' ,  and 2 ' ) .  

A :;; is the computation of W, x, y , and Z ,  and w' , x', y', Z '  in Table 3, or  of w, X, y , 
z in Table 4, whichever is applicable to the phase quadrants of a ,  p ,  and y. 

yield a triaxial dynamic unbalance correction; however alternative corrections may be preferable 
because they involve less  added weight, because weight addition may be more convenient, or be- 
cause the accuracy of correction may be less  dependent on precise placement of weights. Ad- 
vantages of minimum weight and minimum dependence on weight placement accuracy will, in 
general, be concurrent and associated with maximum angular displacement of correction weights 
from all of the reference axes. 

A :;; will 

Alternative corrections are obtained by adding a triaxially symmetric unbalance vector and 
correcting for the modified unbalance situation. 

A triaxially symmetric vector means an opposed pair of weights located so that they provide 
equal unbalance effect about all of the reference axes. There a r e  only four possible locations with 
positive x coordinates on the "unit sphere" surface: 

1. x = +0.578, y = +0.578, z = +0.578 ( a =  45", ,B = 45", y = 45"), 
2. x = +0.578, y = +0.578, z = -0.578 ( a  = 135", ,B = 315", y = 225"), 
3. x = +0.578, y = -0.578, z = -0.578 ( a =  225", ,B = 135", y = 315"), 
4. x = +0.578, y = -0.578, z = +0.578 ( a  = 315", ,8 = 225", y = 135"). 

A weight W at one of these locations (plus an equal weight diametrically opposed on the "negative 
X" hemisphere) will cause D, = D, = D, = 0.942W = Dp with phase angles a ,  p ,  y as indicated 
(0.578 is an approximation of I/ fi and 0.942 of (2/3)  fl. 

Figure 5 is a common plot of normalized initial unbalance vectors D, &(OX), D,&(oY), and 

D~/LV(OZ) .  D,(oP,,,) 
D Y ' / p l  (P,,,Y) , and D,'Jy'(P,,,Z) represent the correction needed after applying D,. Although 

Dp 

represents a triaxially symmetric vector, per case 1 above, D,' L(P,,,X) , 

must be at 45 degrees, its magnitude is arbitrary and therefore an infinite number of possible 
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solutions exists. In all cases D x ' B ,  D Y ' B ,  
the total ballast weight required will !e a function of the magnitude of D,: total weight = (3 / f i )Dp  

plus the weight indicated by 

D z ' k w i l l  be normalized, Le., consistent, and 

x ' y ' z  A , r p t y *  . 
The total weight can be expressed in terms of D, and known data, and solving for zero values 

of the derivative of this expression would yield the optimum value of D, for minimum weight cor- 
rection. However, this would be a prohibitively cumbersome operation since the total weight is 

where 

1 
t y2 - z 2  

tx2 - y2 t z 2  

K, = 

(note that K: + K; + K: = 1 ). K, and K, 

are the smaller two of K, , K,, and K, if the 
phase quadrant combination of a', p', y' is 
142, 214, 333, or  421, but are both zero i f  
the phase quadrant combination of a', p', y' 

is 111, 243, 324, or  432; 

90" 
4- t V 

L? 270" 

Figure 5-Vector plot for case 1 of a triaxially 
symmetric vector Dp. 

x2 = D a  t D: - fi DpDX(cos a + s i n a )  , 

y2 = t D,' - fi D , D , ( c o s ~  + s inp)  , 

z 2  = D a  + D: - fl D,D,(cos y t s i n y )  , 

D, s i n a  - 0.707DP 

D, cos a - 0.707DP 
~~~ a:  = tan- '  ' 

D, s inp - 0.707DP 
p' = tan-1 D, c o s p  - 0.707DP ' 
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D, s h y  - 0.707DP 
y' = tan-' D, cosy - 0.707DP ' 

Equation 52 holds only for case 1 of the triaxially symmetric vector D,. It would have to be modi- 
fied by geometrically appropriate changes of the signs of some of the trigonometric functions to be 
valid for cases 2, 3, or 4. 

The total weight function was evaluated for specific values of Dx&, D Y h ,  and D,band various 
case 1 values of D,. Setting D, = 0 gave the minimum number of correction weights, but not the 
minimum total weight. The total weight function had more than one minimum and at  least one rela- 
tive maximum. It became infinite when a' , p ' ,  or y' was 0", go", 180°, or 270". Further evalu- 
ation of the function could be made by expressing its derivative analytically, a formidable task, or 
by curve plotting based on iterative computation for incremental values of D, . The latter would be 
tedious but relatively straightforward. If D, were larger than D, and D, , D, could be limited to 
the value of D, and increased in increments of 0.01 D, from zero to D,. 

Figure 5 illustrates only case 1 of the four possible triaxially symmetric unbalance vectors. 
Each of the other three cases is represented on a common vector plot by equal vectors at 135", 
225", and 315", as shown in Figure 6, where OP, is the contribution to D,, OP, the contribution to 
Dy, and OP, the contribution to D, . 

Figure 7 shows initial unbalances OX,  OY , oz with a case 2 triaxially symmetric vector repre- 
sented by OP, , OP, , and oP, , and a case 3 symmetric vector represented by OP,', OP,; and OP,'. 

Note that P, and P, ' are joined to x, P, and P,' to Y , and P, and P,' to Z . 
Figure 8 shows a similar plot for a case 4 symmetric vector. For all cases, the magnitude 

of the symmetric vector is arbitrary ( OP,, OP,, and OP, must be equal but can have any length) 
and therefore each case represents a range of possible solutions. Also D x ' g ,  DY'/P) ,  and D Z ' B  

will be normalized, and the total ballast weight needed wi l l  be (3/d2) D, plus the weight indicated 
by A a ~ p ~ ~ ~  . x ' y ' z '  

To consider all possibilities it would be necessary to evaluate all the cases for all values of 

D,. However, some cases can be eliminated by inspection. If a ,  p ,  y are all in the first quadrant, 
only case 1 need be considered, and if a , p ,  y a r e  all in the third quadrant (see Figure 8), only 

cases 2, 3, and 4 need be considered. Apart 
from these two general rules, a vector plot 
may allow some elimination. For example, 
case 3 could be eliminated in the situation 
shown by Figure 7, because a case 3 triaxi- 
ally symmetric vector opposes all three of 
the original unbalance vectors. Of course, 
computer programming could be used to 
evaluate all possibilities and this might be 
better than including selective rejection rules 
in the program. 

'3 - Dz 
270" 

CASE 1 CASE 2 CASE 3 CASE 4 

Figure 6-Common vector plots of the four possible 
triaxiol ly symmetric vector cases. 
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90" 
90" 

I 
L 

v 
A 

- 0" 

135" 45" 

- 0" 

Y 
Figure 7-Vector plots for case 2 (4) and case 3 (--+) 

of triaxially symmetric vectors. 

Y 

Figure 8-Vector plot for case 4 of a triaxially 
symmetric vector D,. 

In summary, computation of the optimum dynamic unbalance correction consists of assuming 
ranges of values for each of the four symmetric vectors, evaluating the weight needed for each 
symmetric vector plus the weight needed for correction of the remaining unbalance, and selecting 
the result which yields the minimum total weight to be added. 

At this point it is pertinent to consider the advantages of finding an optimum (minimum weight) 
solution rather than, for instance, that given by with no symmetric vector. 

The obvious advantage is saving weight, and the weight saved may be considerable. For a 
specific case (Appendix B) 
tated only 1192 grams, and this was for an 83 kilogram spacecraft where the initial unbalance was 
comparatively small. Another advantage is that an optimized correction will, in practice, balance 
more precisely (assuming a "one shot" correction). The reason is that the D, vector weight is 
located for  minimum sensitivity to placement e r ro r  and also induces the secondary corrections 
into locations of reduced sensitivity to placement error ,  i.e., it pulls them away from the reference 
axes. A given radial placement e r ror  has proportionally less effect at increased radius. Also, the 
probability of accurate placement is better for smaller weights. Advance provision for the eight 
possible D, vector weights could well be advantageous. 

E;; yielded 1886 grams, whereas an optimized solution necessi- 

Further justification for optimizing might be that it could easily be done by computer, and the 
incidental computation of many alternative corrections would, for an actual spacecraft, greatly 
assist in selecting an expedient correction. 
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For "single axis" balancing, weight optimizing, by judicious selection of correction planes, 
can be intuitive and alternative corrections can readily be devised if interference problems arise. 
But intuition is inadequate for the greater complexity of triaxial balancing, and manual computation 
of alternative corrections would be intolerably time consuming. 

Correcting Unbalance 

Unbalance can be corrected either by design o r  by ballasting. Balancing by design means 
placing or relocating components of an assembly so that the unbalance is within specified limits. 
It might also include such steps as changing the primary reference axes, o r  repositioning control 
elements, to conform to the actual measured or computed situation. Most of this study is quite 
pertinent to the general problem of designing spacecraft to be adequately well balanced in the first 
place so that no correction is needed. Balance is always recognized as a design factor, and de- 
velopment of more comprehensive and sophisticated techniques for balancing by design might well 
meet the needs of large spacecraft with relatively liberal unbalance tolerances. Key factors would 
be comprehensive and systematic mass measurement of all components, good quality control of 
assembly, effective e r ro r  analysis, and suitable data processing and computer programs. 

Correction by ballasting means adding weight in locations defined by the expression of un- 
balance. These locations are much more restrictive for triaxial balancing than for single axis 
balancing. Each of the weights needed must lie on a specific radiant line from the reference axis 
origin. "Splitting" weights to give the same vector effect is not impossible, but would need com- 
plicated analysis, especially for dynamic unbalance corrections. 

A static correction equivalent to weight N at unit radius requires a weight of N/r at radius r . 

The diametrically opposed radiants for dynamic unbalance correction are defined by + X, + y, 

t z and -x, - y ,  -2. If at unit radius each correction weight would be w , and both weights are to be 
at the same radius P, each would have to be Wh2 . If one weight L, is to be at radius r, ,  and the 
opposed weight L2 at radius r 2  then: 

L l r ,  = L2r2 . (53) 

Static balance must be preserved. Dynamic balance about axis xx must also be preserved. Let 
the included angle between the XX axis and the dynamic correction radiant be + ; then 

L,r: cos + sin+ + ~ ~ r ; c o s  + sin+ = 2 ~ ( 1 ) 2  cos4 sin+. (54) 

As cos + s i n @  cancels out, other axes need not be considered. From Equations 53 and 54 it follows 
that 
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2w 
r l  (rl + r2) 

L, = 

If values are assumed for W , r,, and L, , Equations 53 and 55 will  give r z  and L,. Note from 
Equation 55 that LlrlZ must be less  than 2W; otherwise L, would have to be infinite for static 
balance to be maintained, since for L,r,? = 2W, r, becomes zero. If values a re  given to W, r ,  and 
r,  Equations 53 and 56 will give L, and L,. In practice all radii should be given maximum values 
consistent with the spacecraft configuration, to minimize the ballast, and any effect of static balance 
correction on dynamic balance must be considered. 

CONCLUSIONS 

This study reports the derivation of analytical relationships, coordinate system coding of un- 
balance corrections, and various related concepts. Its intention was to promote understanding and 
suggest effective practical applications. Defining the N ,  d ,  e ,  W, X ,  y ,  or -C ,  p ,  q, r unbalance 
expression system and operation a were major objectives. Its practical motivation was the needs 
of a particular spacecraft program (Appendix B). 

Triaxial balancing is inherently more complicated than single axis balancing. However, bal- 
ance tolerances a r e  likely to be less  stringent. Five problem areas a re  apparent: 

1. How to make sufficient physical measurements to define initial unbalance. This study has 
defined what measurements a r e  necessary, unless prior knowledge or acceptable estimates exist. 
These may be total weight, inertias about three axes, magnitude and phase of static and dynamic 
unbalance about one axis, and phase only of static and dynamic unbalance about a second axis. How- 
ever, the effect of static unbalance correction on dynamic unbalances must be considered. This 
can be done by coding unbalances about x = y = z = 0 as ( N ,  d, e ,  W ,  X, y ) ,  and ( N ,  d ,  e ,  - N ,  d , e ) *  

(due to static unbalance) and performing (N , d ,  e ,  W, X, Y ) ~  CB (N, d, e, - N ,  d ,  e ) B ,  or by 
applying static unbalance correction before determining dynamic unbalances. The relative merits 
and the best sequence of operations for either case depend on specific circumstances. There a re  
other combinations of sufficient measurements, which suggests study of which measurements a re  
easier to obtain with requisite accuracy. Redundant data will, i f  properly processed, improve the 
overall accuracy of balancing. 

2. Relating measurements to unbalance tolerances. This study covers how it may be done. 

3. Determining required corrections. This study proposes a system for expressing triaxial 
unbalance which implicitly defines corrections, and discusses latitude in actual weight location. 
The final choice depends on the specific spacecraft configuration. 

4. Applying corrections. Because choice of location is very limited, this is likely to be more 
of a problem than in single axis balancing. Also, vector splitting techniques a re  difficult to 
evaluate, and should be considered with extreme caution, although the technique for computing the 
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effect of changes to spacecraft can be used to check whether two proposed weights a r e  in fact 
equivalent to an indicated single weight. Computer programming would be almost essential to apply 
this technique very extensively. 

5. Evaluating changes to spacecraft, including addition of appendages, etc., which cannot be 
balanced on the spacecraft. This study covers how this may be done. Again, computer programming 
is extremely advantageous. 

(Manuscript received July 18, 1963) 
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Appendix A 

Solution of the Triaxial Balance Equations 

If it is given that 

it is obvious that 

Let 

Also set 

&/ = y iiG-7 , 

(&)' = x q y z  + 2') = (xy)' + (xz )2  = L , 

(g)' = y2(x2 + z') = (xy)' + (yz)' = M , 

(&)' = Z'(x' + y') = (xz)' + (yz)' = N . 
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Therefore 

P + Q  = L ,  

P + R  = M ,  

Q + R  = N ,  

and so 

L + M  = 2 P + Q + R ,  

From Equations Al-A3 it can be seen that 

P = L - Q ,  

R = M - P ,  

Q = N - R .  

Then from Equations A14, A16, and A17 

So 2P + N = L + M ;  therefore 

L + M - N  
P =  2 

By reverting to original symbols: 

a2 + b2 - cz  - - 
2( 2 w y  

From Equations A l l  and A13 
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SO 

L + N - M  
Q =  2 

Again by reverting to original symbols: 

( X z y  = ($ + ($$ 2 - 

az - bZ t cz - - 
8Wz 

Now, from Equations A12 and A13 

M t N  = 2 R + P + Q  

= 2 R + L - Q + N - R  

= 2R + L - N t R + N - R 

= 2 R + L ,  

SO 

M + N - L  
2 R =  

Again, in reverting to original symbols: 



To obtain x2 , y2, and z2,  begin by dividing Equation A19 by Equation A23, 

The value for y2 can be obtained from Equations A21 and A23, 

Likewise, from Equations A19 and A23 

The procedure for deriving x2, y2, and z2 can be used to derive the following: 

X2 - (=I2 = a2 - b2 + c2 
Y2 (Yz>2 -a2 t b2 + c2 ' 
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a2 - b2 + ~ 2 )  = x2 ( - a 2  + b 2  + c 2  
z2 = Y2 + bZ - c 2  a2  + b2 - c2 

It can be seen that Equations A27 and A24 are the same, Equations A28 and A25 are the same, and 
Equations A29 and A26 are the same. By using Equations A4, A28, and A25, 

) =  1 ,  
-a2 t b2 t c 2  

a2 + b2 - c 2  
-a2 + b2 + c 2  
a2 - b2 + c 2  

x2 + x2 

- _ _  1 x -  
{:(-a2 t b2 t c2) +- ( 

a2 - b2 + c 2  a2 + b2 - c 2  

Similarly 

- 1 v - -- , -_ 
a2 - b 2  + c 2  a2 - b2 t c 2  

a2  + b2 - c 2  ) + (-a2 + b2 t c2 

1 - 
(A32) 

z -  i i  t ( a 2  + b Z  - c z )  + ( a2  + b2 - c 2  
-a2 + b2 t c 2  a2 - b2 + c2 

Inspection of Equations A30 , A31 , and A32 will show that their solution will result in real  
numbers only if  the sum of any two of the quantities a', bZ, and cZ exceeds the third quantity. 
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Appendix B 

Triaxial Balancing of San Marco Flight Unit 2 

The San Marco project is a joint program of Italy and the United States and the balancing of 
the Italian built spacecraft, performed by NASA at the Goddard Space Flight Center, was  aided by 
the cooperation of personnel of the Italian Space Commission. Triaxial balancing was necessary 
for proper functioning of the drag measurement equipment on the spacecraft. San Marco flight 
unit 2 was balanced about its three reference axes by using stub shaft attachments to the space- 
craft instead of the "wrap around" fixture used for earlier San Marco balance operations. The 
unit was  balanced twice and both operations will be discussed here. The first operation reduced 
the dynamic unbalance to less  than 25 oz.-in.2 about all three axes; the second to less  than 15 
02.-in. 
value obtainable because of nonconcurrence of the reference axes. 

Both operations reduced center of gravity displacement to less than 0.005 in.-the best 

First Balancing Operation 

The stub shafts and spacecraft attachment adapters were individually statically balanced 
before assembly. Their static unbalance was minor and their design was assumed to preclude any 
appreciable dynamic unbalance. Alignment checks were made to ensure that the axes of rotation 
essentially coincided with the spacecraft reference axes. Deviations noted were considerably less  
than for the "wrap around" fixture used for flight unit 1 and did not exceed the practical limita- 
tions imposed by machining tolerances. 

Measurements of initial static and dynamic unbalance about each reference axis were used to 
compute required corrections. Experience with unit 1 had shown that minor inconsistencies in 
measured data could affect the correction computation drastically, and even render the basic 
equations incapable of rational solution (as mentioned in the text). Therefore, a technique was 
developed to "normalize" (i.e., make consistent by averaging out the incompatibilities between 
redundant data) the measured data prior to calculation. The alternative solution of the basic set 
of dynamic balance equations was also derived and used and proved more amenable to arithmetic 
operations. 

Corrections were applied to the spacecraft and residual unbalance was measured about all 
three axes. Results were: Spacecraft center of gravity displacement from reference axes inter- 
section was reduced from approximately 0.2 in. to 0.003 in.; dynamic unbalance, axis xx, was  
reduced from 520 oz.-in.2 to 25 oz.-in.2; dynamic unbalance, axis W, was reduced from 1210 
oz.-in.2 to 22 oz.-in.2; dynamic unbalance, axis Z Z ,  was  reduced from 1100 oz.-in? to 20 oz.-in.2. 
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The weight of the spacecraft (including shell) after balancing was 177.7 * 0.1 lb. Approxi- 
mately 8.5 lb (4.8 percent of the total) was added for balancing. 

Second Balancing Operation 

Between the first and second balancing operations the spacecraft had minor component modi- 
fications, but the initial unbalance was assumed to be small. Since the earlier dynamic unbalance 
correction was not optimized for minimum weight, it was decided to remove it, apply the equiva- 
lent optimized correction determined as described in the text, and then measure and correct 'the 
remaining unbalance. Substitution of the optimized for the original dynamic correction gave a 
net weight reduction of 0.95 lb, and unbalance was then measured as follows: 

1. Static balance was 30 oz. in. about axis XX, 2 1  oz. in. about W, and 27.5 oz. in. about ZZ. 

2. Dynamic unbalance was 160 oz. ins2 about axis XX, 124 oz. in.2 about w, and 139 oz. in.' 
about ZZ. 

The apparent static unbalance was largely due to nonconcurrence of the actual axis of spin. 
For the spin axis it was noted that the spacecraft interface (at the separation plane) was a very 
loose f i t  on the adapter, having at least a 0.020 in. lateral slop, and was actually located (non- 
repeatably) by the external marmon clamp. 

The dynamic unbalance was consistent with the expected results of modifications to the space- 
craft; therefore the equivalence of the optimized to the original correction was essentially 
demonstrated. 

The remaining dynamic unbalance did not warrant computing an optimized correction or con- 
solidating the correction with existing weights; therefore a basic correction (no triaxially sym- 
metric vector) was applied; this added 0.33 lb. Some final static balancing involved removal of 
0.31 lb from existing balance weights, the overall operation reduced the total balancing weight on 
the spacecraft by 0.93 lb. Balancing required weight additions at 13 discrete locations, and be- 
cause of spacecraft structural considerations 25 individual weights were actually attached. The 
final balance operation took 3 days and about 75 man-hours effort, much less  than the earlier 
operation, because techniques had been improved and the spacecraft had less  initial unbalance. 

The residual unbalance obtained was as follows: Static unbalance was 8.6 oz. in. about 
spin axis XX, 9.7 02.  in. about w , and 8.5 oz. in. about zz. (At least 70 percent of this static un- 
balance was the unavoidable consequence of nonconcurrence of the reference axes.) Dynamic un- 
balance was  10 oz. in.' about XX, 12 oz. in.2 about W, and 15 oz. in.2 about ZZ. The final weight 
of the spacecraft, including shell and antennas, was 177.5 lb. About 4.25 percent of this was 
balance weight (considerably less than the 4.8 percent needed by the f i rs t  balancing operation). 

Conclusions 
Entirely new techniques were developed and applied to achieve the desired balance of the 

San Marco. This was the most complex precision balancing operation yet performed. The minor 
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additional complications of concurrent control of inertias and total weight would have posed the 
ultimate complexity of complete control of all mass properties, so almost any balancing problem 
would be soluble by the general methods developed for  San Marco. 

The first balancing operation corrected unbalance with the minimum number of correction 
weights, and the second with a larger number of weights but with less total added weight. 

The residual static unbalance was negligible because of the greater effect of nonconcurrence 
of reference axes. The residual dynamic unbalance, being equivalent to principal axis angular 
deviations between 0.15 and 0.02 degree, was low enough that non-orthogonality of reference axes 
may well have been significant. 

Therefore, the San Marco flight unit 2 was balanced as well as the geometric e r ro r s  of its 
own structure permitted. Effects due to unbalance could not have exceeded those due to geometric 
inaccuracies. 
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